Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter

نویسندگان

  • Hamid Moradkhani
  • Kuo-Lin Hsu
  • Hoshin Gupta
  • Soroosh Sorooshian
چکیده

[1] Two elementary issues in contemporary Earth system science and engineering are (1) the specification of model parameter values which characterize a system and (2) the estimation of state variables which express the system dynamic. This paper explores a novel sequential hydrologic data assimilation approach for estimating model parameters and state variables using particle filters (PFs). PFs have their origin in Bayesian estimation. Methods for batch calibration, despite major recent advances, appear to lack the flexibility required to treat uncertainties in the current system as new information is received. Methods based on sequential Bayesian estimation seem better able to take advantage of the temporal organization and structure of information, so that better compliance of the model output with observations can be achieved. Such methods provide platforms for improved uncertainty assessment and estimation of hydrologic model components, by providing more complete and accurate representations of the forecast and analysis probability distributions. This paper introduces particle filtering as a sequential Bayesian filtering having features that represent the full probability distribution of predictive uncertainties. Particle filters have, so far, generally been used to recursively estimate the posterior distribution of the model state; this paper investigates their applicability to the approximation of the posterior distribution of parameters. The capability and usefulness of particle filters for adaptive inference of the joint posterior distribution of the parameters and state variables are illustrated via two case studies using a parsimonious conceptual hydrologic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential data assimilation for streamflow forecasting using a distributed hydrologic model: particle filtering and ensemble Kalman filtering

Accurate streamflow predictions are crucial for mitigating flood damage and addressing operational flood scenarios. In recent years, sequential data assimilation methods have drawn attention due to their potential to handle explicitly the various sources of uncertainty in hydrologic models. In this study, we implement two ensemble-based sequential data assimilation methods for streamflow foreca...

متن کامل

Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting

[1] In the past few years sequential data assimilation (SDA) methods have emerged as the best possible method at hand to properly treat all sources of error in hydrological modeling. However, very few studies have actually implemented SDA methods using realistic input error models for precipitation. In this study we use particle filtering as a SDA method to propagate input errors through a conc...

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging

[1] Predictive uncertainty analysis in hydrologic modeling has become an active area of research, the goal being to generate meaningful error bounds on model predictions. State-space filtering methods, such as the ensemble Kalman filter (EnKF), have shown the most flexibility to integrate all sources of uncertainty. However, predictive uncertainty analyses are typically carried out using a sing...

متن کامل

A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter

[1] Sequential data assimilation methods, such as the ensemble Kalman filter (EnKF), provide a general framework to account for various uncertainties in hydrologic modeling, simultaneously estimating dynamic states and model parameters with a state augmentation technique. But this technique suffers from spurious correlation for impulse responses, such as the rainfall-runoff process, especially ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005